
CHEM 6352

Directed Hydrogenations

Figures and Schemes Primarily from Hoveda, Evans, Fu *Chem. Rev.* **1993**, *93*(4), 1307 *Cyclic Cases*

Crabtree's Catalyst Brown's Catalyst See also: Stork *JACS* **1983**, *105*, 1072

General Substrate Types:

Directing Groups:

- -- All give high levels of diastereocontrol with Crabtree's catalyst
- The directing group in the axial position is preferred due to olefin proximity.
- Substrates that exist with an axial directing group exhibit higher diastereocontrol.
- In general, the Crabtree catalyst is superior in terms of activity, particularly with trisubstituted olefins.
- Often using <u>lower</u> concentration of Crabtree's catalyst leads to <u>higher</u> levels of diastereocontrol. This has been ascribed to avoiding the formation of polymetallic complexes that do not show the same directing effects.
- In cases where olefin isomerization is competitive, using the rhodium catalyst and elevated pressure favors hydrogenation.

Olefin Isomerization:

Scheme 23

Examples:

Table 32. Hydrogenation of Cyclic Homo- and Bishomoallylic Alcohols with [Ir(cod)py(PCy₃)]PF₆

Entry	Substrate	Major Product	Mol % Ir cataly	rst S	electivity
	R OH	R _{man} OH	20	a. R = H	>99 : 1
1		\bigcirc	20	b. R = Me	33 : 1
	Me R, ,CH₂OH	Ñe R _{Ma} CH₂OH			
•	\sim		20	a. R = H	6:1
2	Me	,,, Me	20	b. R = Me	9:1
	CH₂OH	CH₂OH 【			
3			2		>99 : 1
	T Me	II Me			
	HO Me	HO Me			
4			20 ວ		24:1

Table 33. Hydrogenation of Cyclic Allylic Alcohols with [Ir(cod)py(PCy_5)] PF_5

Entry	Substrate	Major Product	Mol of Ir cata		Selectivity
1	R OH Me	R _{A,A} OH	20 20	a. R = H b. R = Me	74:1 >100:1
Ме , 2	OH Me	Me OH	2		65 : 1
Ме <i>.</i> З	OH Me	Me.,,, OH	2		36:1
4 ⟨ Me₂HC	Me ""OH N	Me Ne ₂ HC H	20 1		"highly selective"

See also Corey *TL* **1984**, *25*, 149 Evans *JACS* **1984**, *106*, 3866 Evans *TL* **1984**, *25*, 4637

For examples with Rh see Evans, Fu page 1307.

Acyclic Cases (allylic alcohols):

- In acyclic systems Rh catalysts are superior to Ir catalysts.
- 1,1-Di and trisubstituted olefins give opposite stereochemical results.
- Olefin isomerization must be avoided by running reactions at high H₂ pressure (500-600 psi).

Table 39. Hydrogenation of Acyclic Allylic Alcohols

Entry	Substrate	Major Product	Mol %, Cat ^a (H ₂ Press)	Selectivity
1	Ph Me	Ph OH Me	2, Rh ⁺ (15 psi)	32:1
2 Et ~	OH O N O Ph	OH O	17.5, Rh ⁺ X N (640 psi) 2.5, Ir ⁺ (15 psi)	13:1 6:1
3 Me	OH O O O O O O O O O O O O O O O O O O	Et	17.5, Rh ⁺ X _N (640 psi) 2.5, Ir ⁺ (15 psi)	10:1 3:1
4 Me	O OH Ph	MeO OH Me	0.5, Rh ⁺ h (15 psi)	99:1
5 MeO、	OH O Me	MeO OH	Ph 10, Rh ⁺ (15 psi)	32:1

 o Catalysts: [Rh(nbd)(diphos-4)]BF_4(Rh^+); [Ir(cod)py-(PCY_3)]PF_6(Ir^+).

Scheme 24

Note that allylic strain is minimized above.

Use the same energy minimizing considerations used for directed epoxidation.

Acyclic Cases (homoallylic alcohols): Scheme 25

Trisubstituted Alkenes

Table 41. Hydrogenations of Acyclic Homoallylic Alcohols

II

Entry	Substrate	Major Product	Mol %, Cat ^a (H ₂ Pres)	Selectivity
1 Me	OH Ph	OH Me	2, Rh ⁺ (15 psi)	7:1
2 Me ₂ HC	CONHMe	Me ₂ HC Me	5, Rh ⁺ b (15 psi)	10:1
3 Me₂H0	ŬH ↓	OH Me	5, Rh ⁺ b (15 psi)	2:1
4 Me₂HC	Me OH CONHMe	OH Et Me₂HC R	5, Rh ⁺ b (15 psi)	8:1
5	H Me Me Me	OH N	5, Rh ⁺ (15 psi)	16:1

 $^{\it a}$ Catalyst: [Rh(nbd)(diphos-4)]BF4 or [Rh(nbd)(diphos-4)]-OSO2CF3.

In hydrogenations of trisubstituted olefins, the steric requirements of the allylic substituent and the olefin geometry have a small but marked effect on the reaction diastereoselection (eqs 63–66, Rh $^+$ = [Rh(nbd)(diphos-4)]BF₄). Since homoallylic hydroxyl groups perform well as directing groups, alkene geometry, along with the relative stereochemistry of the homoallylic hydroxy functionality, can be manipulated for effective control of the sense of asymmetric induction.

OH
BZO
Et

OBZ

$$\begin{array}{c}
H_2 (15 \text{ psi}) \\
20 \text{ mol}\% \text{ Rh}^+
\end{array}$$

OH
BZO
Et

OH

OBZ

OH

Diastereoselection 32:1

OH

BZO
Et

Diastereoselection 99:1

OH

OH

OTBS

OH

OH

OTBS

OH

Diastereoselection 19:1

OH

OH

OH

OTBS

OH

OH

OH

OTBS

OH

OH

OTBS

OH

OH

OTBS

OH

OH

OTBS

OH

OH

Diastereoselection 19:1

OH

OH

OTBS

OH

OH

OTBS

OH

OH

OTBS

OTBS

OH

OH

OH

OTBS

O

In cases where allylic and homoallylic stereogenic centers are present, alkene rearrangement is not observed at 15 psi H₂, and the cationic rhodium and the cationic iridium catalysts afford high levels of diastereoselection (eqs 67–69). Once again, it is the allylic center, not the stereogenic homoallylic carbinol site, that determines which diastereoface will be preferentially hydrogenated. Moreover, comparison of eqs 67 and 68 indicates that the anti relative stereochemistry